Thin Film Growth of 3D Sr-based Metal-Organic Framework on Conductive Glass via Electrochemical Deposition

ChemistryOpen. 2022 Feb;11(2):e202100295. doi: 10.1002/open.202100295.

Abstract

Integration of metal-organic frameworks (MOFs) as components of advanced electronic devices is at a very early phase of development and the fundamental issues related to their crystal growth on conductive substrate need to be addressed. Herein, we report on the structural characterization of a newly synthesized Sr-based MOF {[Sr(2,5-Pzdc)(H2 O)2 ] ⋅ 3 H2 O}n (1) and the uniform crystal growth of compound 1 on a conducting glass (fluorine doped tin oxide (FTO)) substrate using electrochemical deposition techniques. The Sr-based MOF 1 was synthesized by the reaction of Sr(NO3 )2 with 2,5-pyrazinedicarboxylic acid dihydrate (2,5-Pzdc) under solvothermal conditions. A single-crystal X-ray diffraction analysis revealed that 1 has a 3D structure and crystallizes in the triclinic P 1 space group. In addition, the uniform crystal growth of this MOF on a conducting glass (FTO) substrate was successfully achieved using electrochemical deposition techniques. Only a handful of MOFs have been reposed to grown on conductive surfaces, which makes this study an important focal point for future research on the applications of MOF-based devices in microelectronics.

Keywords: electrochemical deposition; metal-organic frameworks; microelectronics; strontium; thin film.