Physiological responses of black locust-rhizobia symbiosis to water stress

Physiol Plant. 2022 Jan;174(1):e13641. doi: 10.1111/ppl.13641.

Abstract

The present study explores the interaction of water supply and rhizobia inoculation on CO2 and H2 O gas exchange characteristics, physiological and biochemical traits in seedlings of Robinia pseudoacacia L. originating from two provenances with contrasting climate and soil backgrounds: the Gansu Province (GS) in northwest China and the Dongbei region (DB) of northeast China. Rhizobia strains were isolated from the 50-years old Robinia forest sites grown in the coastal region of east China. Robinia seedlings with and without rhizobia inoculation were exposed to normal water supply, moderate drought, and rewatering treatments, respectively. After 2 weeks of drought treatment, photosynthetic and physiological traits (net photosynthetic rate, stomatal conductance, stable isotope signature of carbon, malondialdehyde and hydrogen peroxide content) of Robinia leaves were significantly altered, but after rewatering, a general recovery was observed. Rhizobia inoculation significantly increased the drought resistance of both Robinia provenances by promoting photosynthesis, increasing the foliar N content and reducing the accumulation of malondialdehyde and hydrogen peroxide. Among the two provenances, DB plants developed more nodules than GS plants, but GS plants were more drought-tolerant than DB plants, both inoculated or noninoculated, indicated by the foliar gas exchange parameters and biochemical traits studied. Our results also show that inoculation of rhizobia could significantly improve the drought resistance of Robinia in both provenances. The present study contributes to the scientific background for the selection of drought-resistant varieties of Robinia to ensure the success of future afforestation projects in degraded terrestrial ecosystems under global climate change.

MeSH terms

  • Dehydration
  • Ecosystem
  • Rhizobium*
  • Robinia* / physiology
  • Stress, Physiological
  • Symbiosis