Occurrence and Antimicrobial Resistance of Enterococci Isolated from Goat's Milk

J Vet Res. 2021 Dec 20;65(4):449-455. doi: 10.2478/jvetres-2021-0071. eCollection 2021 Dec.

Abstract

Introduction: Enterococci are widespread, being part of the bacterial flora of humans and animals. The food chain can be therefore considered as the main route of transmission of antibiotic resistant bacteria between the animal and human populations. Milk in particular represents a source from which resistant bacteria can enter the human food chain. The aim of the study was to determine the occurrence and resistance to antimicrobial agents of Enterococcus spp. strains isolated from raw goat's milk samples.

Material and methods: A total of 207 goat's milk samples were collected. Samples were cultivated on selective media and confirmed as E. faecium or E. faecalis and screened for selected resistance genes by PCR. Drug susceptibility determination was performed by microdilution on Sensititre EU Surveillance Enterococcus EUVENC Antimicrobial Susceptibility Testing (AST) Plates and Sensititre US National Antimicrobial Resistance Monitoring System Gram Positive CMV3AGPF AST Plates.

Results: Enterococcal strains totalling 196 were isolated, of which 40.8% were E. faecalis and 15.3% were E. faecium. All tested isolates were susceptible to linezolid, penicillin and tigecycline. For most other antimicrobials the prevalence of resistance was 0.5-6.6% while high prevalence of quinupristin/dalfopristin (51.5%), tetracycline (30%) and lincomycin (52%) resistance was observed.

Conclusion: This study affords better knowledge concerning the safety of raw goat's milk in terms of the enterococci possible to isolate from this foodstuff. It seems that enterococci in milk are still mostly susceptible to antimicrobials of major concern as multiply resisted drugs, such as gentamycin and vancomycin. However, the presence of multi-resistant strains in goat milk is cause for apprehension.

Keywords: antimicrobial resistance; enterococci; goat’s milk; milk; resistance genes.