Optical ultrasound sensors for photoacoustic imaging: a narrative review

Quant Imaging Med Surg. 2022 Feb;12(2):1608-1631. doi: 10.21037/qims-21-605.

Abstract

Optical ultrasound sensors have been increasingly employed in biomedical diagnosis and photoacoustic imaging (PAI) due to high sensitivity and resolution. PAI could visualize the distribution of ultrasound excited by laser pulses in biological tissues. The information of tissues is detected by ultrasound sensors in order to reconstruct structural images. However, traditional ultrasound transducers are made of piezoelectric films that lose sensitivity quadratically with the size reduction. In addition, the influence of electromagnetic interference limits further applications of traditional ultrasound transducers. Therefore, optical ultrasound sensors are developed to overcome these shortcomings. In this review, optical ultrasound sensors are classified into resonant and non-resonant ones in view of physical principles. The principles and basic parameters of sensors are introduced in detail. Moreover, the state of the art of optical ultrasound sensors and applications in PAI are also presented. Furthermore, the merits and drawbacks of sensors based on resonance and non-resonance are discussed in perspectives. We believe this review could provide researchers with a better understanding of the current status of optical ultrasound sensors and biomedical applications.

Keywords: Bragg grating; Optical ultrasound detection; microring resonator; photoacoustic endoscopy; photoacoustic imaging (PAI).

Publication types

  • Review