Hierarchical CuS@ZnIn2S4 Hollow Double-Shelled p-n Heterojunction Octahedra Decorated with Fullerene C60 for Remarkable Selectivity and Activity of CO2 Photoreduction into CH4

ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7888-7899. doi: 10.1021/acsami.1c20980. Epub 2022 Feb 2.

Abstract

In this work, a hollow double-shelled architecture, based on n-type ZnIn2S4 nanosheet-coated p-type CuS hollow octahedra (CuS@ZnIn2S4 HDSOs), is designed and fabricated as a p-n heterojunction photocatalyst for selective CO2 photoreduction into CH4. The resulting hybrids provide rich active sites and effective charge migration/separation to drive CO2 photoreduction, and meanwhile, CO detachment is delayed to increase the possibility of eight-electron reactions for CH4 production. As expected, the optimized CuS@ZnIn2S4 HDSOs manifest a CH4 yield of 28.0 μmol g-1 h-1 and a boosted CH4 selectivity up to 94.5%. The decorated C60 both possesses high electron affinity and improves catalyst stability and CO2 adsorption ability. Thus, the C60-decorated CuS@ZnIn2S4 HDSOs exhibit the highest CH4 evolution rate of 43.6 μmol g-1 h-1 and 96.5% selectivity. This work provides a rational strategy for designing and fabricating efficient heteroarchitectures for CO2 photoreduction.

Keywords: CO2 photoreduction; CuS@ZnIn2S4; hollow double-shelled octahedra; p−n heterojunction; selectivity.