Association of cycle threshold values of CBNAAT with severity and outcome in COVID-19

Monaldi Arch Chest Dis. 2021 Jul 21;91(4). doi: 10.4081/monaldi.2021.1759.

Abstract

Determination of viral load through cycle threshold (Ct) values may act as a predictor of severity and outcomes in patients with corona virus disease 2019 (COVID-19). However, variable literature is available regarding this relationship. Our study attempted to explore this association and the effect of various socio-demographic and clinical parameters on severity and outcome of COVID-19. Retrospective analysis of records of 731 patients whose nasopharyngeal/oropharyngeal swabs were subjected to cartridge based nucleic acid amplification (CBNAAT) on Cepheid Xpert Xpress SARS-CoV-2 was done. Ct values of N2 and E genes were studied in relation to severity and outcome of COVID-19. The viral load as determined by Ct values was classified as high (<25), medium (25.1-32) and low (>32). Association of socio-demographic and clinical parameters with respect to severity and outcome was also studied. Severity and mortality were significantly more in elder individuals, those belonging to the rural background, those with symptoms >7 days in duration before presentation and those with increasing number of co-morbidities (severity: p<0.001; mortality: p<0.001, 0.005, 0.006 and <0.001, respectively). The Ct values of gene N2 and E inversely correlated with severity and mortality from the disease (N2 gene: p=0.001 for both severity and mortality, E gene: severity: p<0.001, mortality: p=0.016, respectively). The severity of the illness and chances of mortality were significantly lesser when the CT value of N2 gene was >32, in comparison when it was upto 25, and when between 25.1 and 32 (severity: p=0.032 and 0.003, respectively; mortality: p=0.018 and <0.001, respectively). Almost similar trends were seen with respect to E gene (severity: p<0.001 and 0.067, respectively; mortality p=0.175 and 0.005, respectively). Viral load as determined by Ct values of N2 and E genes can act as surrogate markers for prediction of severity and disease outcomes in COVID-19.

MeSH terms

  • Aged
  • COVID-19*
  • Humans
  • Nucleic Acid Amplification Techniques
  • Retrospective Studies
  • SARS-CoV-2
  • Viral Load