Boosting Zn2+ Diffusion via Tunnel-Type Hydrogen Vanadium Bronze for High-Performance Zinc Ion Batteries

ACS Appl Mater Interfaces. 2022 Feb 16;14(6):7909-7916. doi: 10.1021/acsami.1c21581. Epub 2022 Feb 1.

Abstract

Aqueous zinc ion batteries (ZIBs) are emerging as a promising candidate in the post-lithium ion battery era, while the limited choice of cathode materials plagues their further development, especially the tunnel-type cathode materials with high electrochemical performance. Here, a tunnel-type vanadium-based compound based on hydrogen vanadium bronze (HxV2O5) microspheres has been fabricated and employed as the cathode for fast Zn2+ ions' intercalation/deintercalation, which delivers an excellent capacity (425 mAh g-1 at 0.1 A g-1), a remarkable cyclability (91.3% after 5000 cycles at 20 A g-1), and a sufficient energy density (311.5 Wh kg-1). As revealed by the experimental and theoretical results, such excellent electrochemical performance is confirmed to result from the fast ions/electrons diffusion kinetics promoted by the unique tunnel structure (3.7 × 4.22 Å2, along the c direction), which accomplishes a low Zn2+ ion diffusion barrier and the superior electron-transfer capability of HxV2O5. These results shed light on designing tunnel-type vanadium-based compounds to boost the prosperous development of Zn2+ ion storage cathodes.

Keywords: diffusion kinetics; electrode; energy barrier; tunnel-type HxV2O5; zinc ion battery.