Selective Photocatalytic Reduction of CO2 to Syngas Over Tunable Metal-Perovskite Interface

ChemSusChem. 2022 Mar 22;15(6):e202102729. doi: 10.1002/cssc.202102729. Epub 2022 Feb 23.

Abstract

The extensive emission of CO2 results in critical environmental issues, such as global warming. Photocatalytic CO2 conversion is a meaningful route to convert CO2 into useful chemicals. However, the highly selective reduction of CO2 with the avoidance of hydrogen evolution is still challenging. Herein, the photocatalytic reduction CO2 to synthesis gas (syngas) was achieved on a metal Ag socketed perovskite LaFeO3 (LFO) catalytic interface prepared by an in-situ exsolution method. The conduction band of Ag-exsolved LFO is more negative than LFO, benefiting efficient CO2 reduction. By tuning the dopant Ag cation in the lattice to nanoparticles pinned on the surface, the CO formation rate was improved around five-fold from 0.51 to 2.41 μmol g-1 h-1 . Meanwhile, the H2 /CO molar ratio also showed strong dependence on the modality of Ag at the metal-perovskite interface. The design offers a promising pathway for transforming CO2 to valuable chemicals based on efficient photocatalysts design.

Keywords: Ag; CO2 reduction; carbon dioxide fixation; exsolution; photocatalysis.