Visible-Light Switching of Metallosupramolecular Assemblies

Chemistry. 2022 Mar 16;28(16):e202104461. doi: 10.1002/chem.202104461. Epub 2022 Feb 19.

Abstract

A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.

Keywords: azobenzenes; molecular cages; photoswitches; self-assembly; supramolecular chemistry.