Different surface treatment strategies on etchable CAD-CAM materials: Part II-Effect on the bond strength

J Prosthet Dent. 2023 Nov;130(5):770-779. doi: 10.1016/j.prosdent.2021.10.007. Epub 2022 Jan 31.

Abstract

Statement of problem: Bonding to recently launched polymer-based computer-aided design and computer-aided manufacturing (CAD-CAM) materials has been challenging. Evidence regarding etching strategies for dual-phase CAD-CAM materials is sparse, but adequate bonding is crucial for the clinical success and longevity of a restoration.

Purpose: The purpose of this 2-part in vitro study was to evaluate and compare the effect of surface treatment strategies on the microshear bond strength and work of adhesion of polymer-based and ceramic materials. In addition, chemical elements present on the surface and the interface morphology after using those strategies were also assessed.

Materials and methods: Two CAD-CAM polymer and 1 CAD-CAM ceramic materials were selected for this in vitro study. The materials were subjected to different surface treatment strategies, including airborne-particle abrasion and the application of 9% hydrofluoric acid. Specimens were submitted to microshear bond strength before and after thermocycling, and the failure mode was classified. The work of adhesion was calculated based on the water-to-air surface tension of 72.8 mN.m-1 and the Young- Dupré equation. The surfaces were submitted to energy-dispersive X-ray spectroscopy, and the interfaces were analyzed using a scanning electron microscope. Data were subjected to 2-way ANOVA and the Tukey post hoc test (α=.05).

Results: The highest microshear bond strength means were observed for the polymer-based materials when hydrofluoric acid or airborne-particle abrasion was applied. The 3 materials tested showed a decrease in microshear bond strength after thermocycling, except for applying airborne-particle abrasion to 1 of the polymer-based material tested. The ceramic material tested showed a high microshear bond strength with the application of airborne-particle abrasion and hydrofluoric acid combined. The work of adhesion varied across the materials and presented high means when hydrofluoric acid was used.

Conclusions: A combination of airborne-particle abrasion plus hydrofluoric acid should be considered for polymer-based or feldspathic ceramic CAD-CAM materials. In this in vitro study, both etching procedures combined produced higher bonding values for all materials tested.

MeSH terms

  • Ceramics / chemistry
  • Ceramics / therapeutic use
  • Computer-Aided Design
  • Dental Bonding*
  • Dental Porcelain / chemistry
  • Hydrofluoric Acid
  • Materials Testing
  • Resin Cements / chemistry
  • Shear Strength
  • Surface Properties

Substances

  • Hydrofluoric Acid
  • Resin Cements
  • Dental Porcelain