Bacterial co-infections in community-acquired pneumonia caused by SARS-CoV-2, influenza virus and respiratory syncytial virus

BMC Infect Dis. 2022 Jan 31;22(1):108. doi: 10.1186/s12879-022-07089-9.

Abstract

Background: A mismatch between a widespread use of broad-spectrum antibiotic agents and a low prevalence of reported bacterial co-infections in patients with SARS-CoV-2 infections has been observed. Herein, we sought to characterize and compare bacterial co-infections at admission in hospitalized patients with SARS-CoV-2, influenza or respiratory syncytial virus (RSV) positive community-acquired pneumonia (CAP).

Methods: A retrospective cohort study of bacterial co-infections at admission in SARS-CoV-2, influenza or RSV-positive adult patients with CAP admitted to Karolinska University Hospital in Stockholm, Sweden, from year 2011 to 2020. The prevalence of bacterial co-infections was investigated and compared between the three virus groups. In each virus group, length of stay, ICU-admission and 30-day mortality was compared in patients with and without bacterial co-infection, adjusting for age, sex and co-morbidities. In the SARS-CoV-2 group, risk factors for bacterial co-infection, were assessed using logistic regression models and creation of two scoring systems based on disease severity, age, co-morbidities and inflammatory markers with assessment of concordance statistics.

Results: Compared to influenza and RSV, the bacterial co-infection testing frequency in SARS-CoV-2 was lower for all included test modalities. Four percent [46/1243 (95% CI 3-5)] of all SARS-CoV-2 patients had a bacterial co-infection at admission, whereas the proportion was 27% [209/775 (95% CI 24-30)] and 29% [69/242 (95% CI 23-35)] in influenza and RSV, respectively. S. pneumoniae and S. aureus constituted the most common bacterial findings for all three virus groups. Comparing SARS-CoV-2 positive patients with and without bacterial co-infection at admission, a relevant association could not be demonstrated nor excluded with regards to risk of ICU-admission (aHR 1.53, 95% CI 0.87-2.69) or 30-day mortality (aHR 1.28, 95% CI 0.66-2.46) in adjusted analyses. Bacterial co-infection was associated with increased inflammatory markers, but the diagnostic accuracy was not substantially different in a scoring system based on disease severity, age, co-morbidities and inflammatory parameters [C statistic 0.66 (95% CI 0.59-0.74)], compared to using disease severity, age and co-morbidities only [C statistic 0.63 (95% CI 0.56-0.70)].

Conclusions: The prevalence of bacterial co-infections was significantly lower in patients with community-acquired SARS-CoV-2 positive pneumonia as compared to influenza and RSV positive pneumonia.

Keywords: COVID-19; Co-infection; Influenza; Respiratory syncytial virus; SARS-CoV-2.

MeSH terms

  • Adult
  • COVID-19*
  • Coinfection* / epidemiology
  • Humans
  • Orthomyxoviridae*
  • Pneumonia, Viral*
  • Respiratory Syncytial Virus, Human*
  • Retrospective Studies
  • SARS-CoV-2
  • Staphylococcus aureus

Grants and funding