Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils

Microb Ecol. 2023 Feb;85(2):441-453. doi: 10.1007/s00248-022-01968-z. Epub 2022 Jan 31.

Abstract

Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.

Keywords: Anaerobic methane oxidation; Community structure; Freshwater wetland; McrA gene; Methanoperedens-like archaea; Soil water content.

MeSH terms

  • Anaerobiosis
  • Archaea* / genetics
  • Fresh Water
  • Iron
  • Methane
  • Nitrates
  • Oxidation-Reduction
  • Phylogeny
  • Soil
  • Water
  • Wetlands*

Substances

  • Nitrates
  • Soil
  • Methane
  • Water
  • Iron