Autotrophic lactate production from H2 + CO2 using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains

Appl Microbiol Biotechnol. 2022 Feb;106(4):1447-1458. doi: 10.1007/s00253-022-11770-z. Epub 2022 Jan 29.

Abstract

Lactate has various uses as industrial platform chemical, poly-lactic acid precursor or feedstock for anaerobic co-cultivations. The aim of this study was to construct and characterise Acetobacterium woodii strains capable of autotrophic lactate production. Therefore, the lctBCD genes, encoding the native Lct dehydrogenase complex, responsible for lactate consumption, were knocked out. Subsequently, a gene encoding a D-lactate dehydrogenase (LDHD) originating from Leuconostoc mesenteroides was expressed in A. woodii, either under the control of the anhydrotetracycline-inducible promoter Ptet or under the lactose-inducible promoter PbgaL. Moreover, LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST) and expressed in respective A. woodii strains. Cells that produced the LDHD fusion protein were capable of lactate production of up to 18.8 mM in autotrophic batch experiments using H2 + CO2 as energy and carbon source. Furthermore, cells showed a clear and bright fluorescence during exponential growth, as well as in the stationary phase after induction, mediated by the N-terminal FAST. Flow cytometry at the single-cell level revealed phenotypic heterogeneities for cells expressing the FAST-tagged LDHD fusion protein. This study shows that FAST provides a new reporter tool to quickly analyze gene expression over the course of growth experiments of A. woodii. Consequently, fluorescence-based reporters allow for faster and more targeted optimization of production strains.Key points •Autotrophic lactate production was achieved with A. woodii. •FAST functions as fluorescent marker protein in A. woodii. •Fluorescence measurements on single-cell level revealed population heterogeneity.

Keywords: Acetobacterium woodii; FAST; Fluorescent tag; Gas fermentation; H2 + CO2; Lactate dehydrogenase.

MeSH terms

  • Acetates / metabolism
  • Acetobacterium
  • Carbon Dioxide* / metabolism
  • Fluorescence
  • Lactic Acid*

Substances

  • Acetates
  • Carbon Dioxide
  • Lactic Acid

Supplementary concepts

  • Acetobacterium woodii