Understanding the Solid-State Electrode-Electrolyte Interface of a Model System Using First-Principles Statistical Mechanics and Thin-Film X-ray Characterization

ACS Appl Mater Interfaces. 2022 Feb 9;14(5):7428-7439. doi: 10.1021/acsami.1c20988. Epub 2022 Jan 28.

Abstract

Intermixing of atomic species at the electrode-electrolyte boundaries can impact the properties of the interfaces in solid-state batteries. Herein, this work uses first-principles statistical mechanics along with experimental characterization to understand intermixing at the electrode-electrolyte interface. For the model presented in this work, lithium manganese oxide (LiMn2O4, LMO) and lithium lanthanum titanate (Li3xLa2/3-xTiO3, LLTO) are employed as the cathode and electrolyte, respectively. The results of the computational work show that Ti-Mn intermixing at the interface is significant at synthesis temperatures. The experimental results in this work find that, at some critical temperatures between 600 and 700 °C for material preparation, the interface of LLTO-LMO becomes blurred. Calculations predict that the interface is unstable with regard to Ti-Mn intermixing starting at 0 K, suggesting that the critical temperature found in the experiment is related to kinetics. The work overall suggests that, in designing a solid-state battery, the fundamental reactions such as intermixing need to be considered.

Keywords: Li-ion; cathodes; electrolytes; interdiffusion; intermixing; solid-state batteries; thin films.