miR-153-3p Attenuates the Development of Gastric Cancer by Suppressing SphK2

Biochem Genet. 2022 Oct;60(5):1748-1761. doi: 10.1007/s10528-021-10166-4. Epub 2022 Jan 28.

Abstract

Gastric cancer (GC) is the second leading cause of cancer-related mortality worldwide. MicroRNAs (miRNAs) have been extensively reported to play a role in GC development; however, it remains unknown whether miR-153-3p participates in the nosogenesis of GC. GC tissues along with the adjacent nontumor tissues were obtained from 50 patients with GC. Moreover, we incubated human GC cell lines (SGC7901, AGS, MGC803, and BGC823) and a gastric epithelial cell line (GES-1) and then transfected BGC823 cells with miR-153-3p and DNA/SphK2 vector to determine the action of miR-153-3p and SphK2 on GC. RT-qPCR was performed to determine the levels of miR-153-3p and sphingosine kinase 2 (SphK2). The viability of BGC823 cells was measured by the CCK-8 assay, while wound healing assays and transwell assays were used to measure the migration and invasion ability of BGC823 cells. Western blotting analysis and immunohistochemistry (IHC) were conducted to evaluate the level of SphK2. The binding ability of miR-153-3p and SphK2 was determined by dual-luciferase reporter assays. The expression level of miR-153-3p was reduced in GC tissues and cells, while the SphK2 was enhanced. An increase in miR-153-3p level led to a decline in the growth and metastasis of GC cells and increased their apoptosis. Moreover, a decrease in miR-153-3p level elevated GC cells growth and metastasis, and attenuated their apoptosis. SphK2 was also corroborated as a downstream gene of miR-153-3p. Here, SphK2 expression was elevated in GC tissues and cells, indicating SphK2 might be involved in the development of GC. Rescue assays showed that miR-153-3p could reverse the effect of SphK2 on the cell growth, metastasis, and the apoptosis of GC cells. In conclusion, this study showed that miR-153-3p suppressed the growth and metastasis in GC cells by regulating SphK2, which might facilitate the search for novel biomarkers to treat GC.

Keywords: Apoptosis; Gastric cancer; Metastasis; Proliferation; SphK2; miR-153-3p.

MeSH terms

  • Apoptosis / genetics
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • MicroRNAs* / genetics
  • Phosphotransferases (Alcohol Group Acceptor)* / genetics
  • Stomach Neoplasms* / pathology

Substances

  • MIRN153 microRNA, human
  • MicroRNAs
  • Phosphotransferases (Alcohol Group Acceptor)
  • sphingosine kinase 2, human