Classification and regression tree for estimating predictive markers to detect T790M mutations after acquired resistance to first line EGFR-TKI: HOPE-002

Invest New Drugs. 2022 Apr;40(2):361-369. doi: 10.1007/s10637-021-01203-5. Epub 2022 Jan 28.

Abstract

Background and objective: Osimertinib as first-line treatment for patients with non-small cell lung cancer (NSCLC) harboring epidermal growth factor (EGFR) mutations remains controversial. Sequential EGFR-tyrosine kinase inhibitor (TKI) might be superior to the first line osimertinib in patients at risk of developing acquired T790M mutations.

Methods: We enrolled consecutive patients with EGFR-mutated (deletion 19 or L858R) advanced NSCLC treated with first-line drugs and evaluated predictive markers using classification and regression tree (CART) for the detection of T790M mutations based on patient backgrounds prior to initial treatment.

Results: Patients without acquired T790M mutations had worse outcomes than those with T790M mutations (median OS: 798 days vs. not reached; HR: 2.70; P < 0.001). CART identified three distinct groups based on variables associated with acquired T790M mutations (age, CYF, WBC, liver metastasis, and LDH; AUROC: 0.77). Based on certain variables, CART identified three distinct groups in deletion 19 (albumin, LDH, bone metastasis, pleural effusion, and WBC; AUROC: 0.81) and two distinct groups in L858R (age, CEA, and ALP; AUROC: 0.80). The T790M detection frequencies after TKI resistance of afatinib and first-generation EGFR-TKIs were similar (35.3% vs. 37.4%, P = 0.933). Afatinib demonstrated longer PFS (398 vs. 279 days; HR: 0.67; P = 0.004) and OS (1053 vs. 956 days; HR: 0.68; P = 0.051) than first-generation EGFR-TKIs.

Conclusion: Identification of patients at risk of acquiring T790M mutations after EGFR-TKI failure may aid in choice of first-line EGFR-TKI. Furthermore, afatinib may be the more effective 1st-line EGFR-TKI treatment for patients at risk of developing T790M as initial EGFR-TKI resistance.

Keywords: Classification and regression tree; EGFR; Non-small cell lung cancer; Predict marker; T790M; Tyrosine kinase inhibitors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Afatinib / therapeutic use
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Carcinoma, Non-Small-Cell Lung* / genetics
  • Carcinoma, Non-Small-Cell Lung* / pathology
  • Epidermal Growth Factor / genetics
  • Epidermal Growth Factor / therapeutic use
  • ErbB Receptors
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / pathology
  • Mutation
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Protein Kinase Inhibitors
  • Afatinib
  • Epidermal Growth Factor
  • EGFR protein, human
  • ErbB Receptors

Associated data

  • UMIN-CTR/UMIN000041474