Much of a Muchness: On the Origins of Two- and Three-Photon Absorption Activity of Dipolar Y-Shaped Chromophores

J Phys Chem A. 2022 Feb 10;126(5):752-759. doi: 10.1021/acs.jpca.1c10098. Epub 2022 Jan 27.

Abstract

The molecular origin of two- (2PA) and three-photon absorption (3PA) activity in three experimentally studied chromophores, prototypical dipolar systems, is investigated. To that end, a generalized few-state model (GFSM) formula is derived for the 3PA transition strength for nonhermitian theories and employed at the coupled-cluster level of theory. Using various computational techniques such as molecular dynamics, linear and quadratic response theories, and GFSM, an in-depth analysis of various optical channels involved in 2PA and 3PA processes is presented. It is found that the four-state model involving the second and third excited singlet states as intermediates is the smallest model among all considered few-state approximations that produces 2PA and 3PA transition strengths (for S0 → S1 transition) close to the reference results. By analyzing various optical channels appearing in these models and involved in studied multiphoton processes, we found that the 2PA and 3PA activities in all the three chromophores are dominated and hence controlled by the dipole moment of the final excited state. The similar origins of the 2PA and the 3PA in these prototypical dipolar chromophores suggest transferability of structure-property relations from the 2PA to the 3PA domain.

MeSH terms

  • Photons*