Compressed superhydrides: the road to room temperature superconductivity

J Phys Condens Matter. 2022 Feb 24;34(17). doi: 10.1088/1361-648X/ac4eaf.

Abstract

Room-temperature superconductivity has been a long-held dream and an area of intensive research. The discovery of H3S and LaH10under high pressure, with superconducting critical temperatures (Tc) above 200 K, sparked a race to find room temperature superconductors in compressed superhydrides. In recent groundbreaking work, room-temperature superconductivity of 288 K was achieved in carbonaceous sulfur hydride at 267 GPa. Here, we describe the important attempts of hydrides in the process of achieving room temperature superconductivity in decades, summarize the main characteristics of high-temperature hydrogen-based superconductors, such as hydrogen structural motifs, bonding features, electronic structure as well as electron-phonon coupling etc. This work aims to provide an up-to-date summary of several type hydrogen-based superconductors based on the hydrogen structural motifs, including covalent superhydrides, clathrate superhydrides, layered superhydrides, and hydrides containing isolated H atom, H2and H3molecular units.

Keywords: high pressure; hydrides; superconductivity.

Publication types

  • Review