Large-Area Interfaces for Single-Molecule Label-free Bioelectronic Detection

Chem Rev. 2022 Feb 23;122(4):4636-4699. doi: 10.1021/acs.chemrev.1c00290. Epub 2022 Jan 25.

Abstract

Bioelectronic transducing surfaces that are nanometric in size have been the main route to detect single molecules. Though enabling the study of rarer events, such methodologies are not suited to assay at concentrations below the nanomolar level. Bioelectronic field-effect-transistors with a wide (μm2-mm2) transducing interface are also assumed to be not suited, because the molecule to be detected is orders of magnitude smaller than the transducing surface. Indeed, it is like seeing changes on the surface of a one-kilometer-wide pond when a droplet of water falls on it. However, it is a fact that a number of large-area transistors have been shown to detect at a limit of detection lower than femtomolar; they are also fast and hence innately suitable for point-of-care applications. This review critically discusses key elements, such as sensing materials, FET-structures, and target molecules that can be selectively assayed. The amplification effects enabling extremely sensitive large-area bioelectronic sensing are also addressed.

Publication types

  • Review

MeSH terms

  • Biosensing Techniques* / methods
  • Nanotechnology
  • Transistors, Electronic*