Solid-State Pathway Control via Reaction-Directing Heteroatoms: Ordered Pyridazine Nanothreads through Selective Cycloaddition

J Am Chem Soc. 2022 Feb 9;144(5):2073-2078. doi: 10.1021/jacs.1c12143. Epub 2022 Jan 25.

Abstract

Nanothreads are one-dimensional nanomaterials composed of a primarily sp3 hydrocarbon backbone, typically formed through the compression of small molecules to high pressures. Although nanothreads have been synthesized from a range of precursors, controlling reaction pathways to produce atomically precise materials remains a difficult challenge. Here, we show how heteroatoms within precursors can serve as "thread-directing" groups by selecting for specific cycloaddition reaction pathways. By using a less-reactive diazine group within a six-membered aromatic ring, we successfully predict and synthesize the first carbon nanothread material derived from pyridazine (1,2-diazine, C4H4N2). Compared with previous nanothreads, the synthesized polypyridazine, shows a predominantly uniform chemical structure with exceptional long-range order, allowing for structural characterization using vibrational spectroscopy and X-ray diffraction. The results demonstrate how thread-directing groups can be used for reaction pathway control and the formation of chemically precise nanothreads with a high degree of structural order.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.