Energized Composites for Electric Vehicles: A Dual Function Energy-Storing Supercapacitor-Based Carbon Fiber Composite for the Body Panels

Small. 2022 Mar;18(9):e2107053. doi: 10.1002/smll.202107053. Epub 2022 Jan 25.

Abstract

The current electric vehicles (EVs) face many challenges like limited charge capacity, low miles/charge, and long charging times. Herein, these issues are addressed by developing a dual-function supercapacitor-based energy-storing carbon fiber reinforced polymer (e-CFRP) that can store electrical energy and function as the structural component for the EV's body shell. This is achieved by developing a unique design, vertically aligned graphene sheets attached to carbon fiber electrodes on which different metal oxides are deposited to obtain high-energy density electrodes. A high-strength multilayer e-CFRP assembly is fabricated using an alternate layer patterning configuration of epoxy and polyacrylamide gel electrolyte. The e-CFRP so developed delivers a high areal energy density of 0.31 mWh cm-2 at 0.3 mm thickness and a high tensile strength of 518 MPa, bending strength of 477 MPa, and impact strength of 2666 J m-1 . To show its application in EVs, a toy car's body panel is fabricated with e-CFRP and the toy car is able to operate using the energy stored in its frame. Moreover, when integrated with a solar cell, this composite powers an Internet of Things device, showing its feasibility in communication satellites.

Keywords: composite supercapacitors; electric vehicle body panels; energy storing composites; graphene; metal oxides.