[Characteristics of Microbial Utilization for Crop Residue-Derived C in Paddy and Upland Soils]

Huan Jing Ke Xue. 2022 Feb 8;43(2):1069-1076. doi: 10.13227/j.hjkx.202107151.
[Article in Chinese]

Abstract

Two typical subtropical agricultural soils, a flooded paddy soil and its adjacent upland, were collected and then incubated with or without 13C-labeled crop residue (maize straw) for 40 days. During the incubation, the mineralization rate of the crop residue was monitored, and the 13C incorporated into fungal and bacterial phospholipid fatty acid (PLFA) was quantified. At the early stage (0.25-1 days), the mineralization rate of crop residue was faster in paddy soil than that in upland soil, whereas the opposite trend was observed from 2 to 20 days. At the late stage (21-40 days), the mineralization rate was similar in both soils. At the end of incubation, 11% of the total crop residue was mineralized in paddy soil, which was about half of that in upland soil (20%). Although paddy soil had a higher amount of microbial biomass (indicated by total PLFA), the total amounts of 13C-PLFA were comparable in both soils, and the enrichment ratio (proportion of 13C to total C in PLFA) was lower in paddy soil than that in upland soil. This indicated that the microbial community in paddy soil was less active in the uptake of crop residue C than that in upland soil. During the incubation, the residue-derived 13C was mainly distributed in bacterial PLFA (up to 86% of total 13C-PLFA, including 59% in gram-positive and 27% in gram-negative bacteria) in paddy soil, and up to 75% of total 13C-PLFA distributed in fungal PLFAs was in upland soil. Thus, bacteria dominated the utilization of crop residue in paddy soil versus fungi in upland soil. Compared with that in upland soil, the microbial activity was suppressed in the anaerobic condition caused by flooding in paddy soil, with a stronger inhibition of fungi than bacteria. Considering the discrepancies of life strategies and necromass turnover between bacteria and fungi, the different dominant microbial groups in the utilization of crop residue in water-logged and well-drained conditions could lead to the distinct accumulation and stabilization of microbial-derived organic matter in paddy and upland soils.

Keywords: 13C phospholipid fatty acid analysis; bacteria; fungi; mineralization; paddy; upland.

MeSH terms

  • Agriculture
  • Carbon
  • Oryza*
  • Soil Microbiology
  • Soil*

Substances

  • Soil
  • Carbon