Immune-related gene expression in skin, inflamed and keloid tissue from patients with keloids

Oncol Lett. 2022 Feb;23(2):72. doi: 10.3892/ol.2022.13192. Epub 2022 Jan 5.

Abstract

Keloids are a tumor-like fibroproliferative skin disease that could cause disfigurement and disability. The pathological mechanisms underlying this condition remain unclear, particularly the progression from normal healthy skin to inflammatory skin tissue, then keloid. In the present study, three immune-related gene expression profiling datasets, were obtained from normal skin tissue (N group), inflamed tissue (I group) and keloid tissue samples from patients with keloids (K group). This sample grouping represents the primary steps of keloid formation, from normal to inflammatory, and finally to keloid tissue. The expression levels of immune-related genes were analyzed, and the differentially expressed genes (DEGs) between the three groups were compared. Protein-protein interaction networks were established using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out to determine the main functions associated with the DEGs and keloid-associated pathways. The results identified hub genes in the N and I groups, including C-C motif chemokine receptor (CCR) 1, CCR7, CD40 ligand, C-X-C motif chemokine ligand 9, IL-6 and IL-10. The hub genes in the I and the K groups included IL-10, IL-6, IL-13 and CD86. The expression levels of these genes were verified using reverse transcription-quantitative PCR. The results demonstrated that IL-6 expression levels were significantly increased in the I group compared with the N group (P=0.0111). CCR7 levels significantly differed between all three groups (P<0.017). The results of GO analysis suggested that the hub genes in the I and N groups may be associated with 'regulation of lymphocyte activation' and 'T-cell activation'. Similar results were also observed between the I and K groups, which may play an important role in keloid initiation and formation. In conclusion, CCR7, IL-10 and IL-6 may be important in keloid initiation and formation. These findings provided insight into the pathogenesis of keloids and may help identify novel immune-related therapeutic targets for this condition.

Keywords: C-C motif chemokine receptor 7; differentially expressed genes; immune-related gene; keloid; tumor epigenetics.

Grants and funding

The present study was supported by The National Natural Science Foundation of China (grant no. 81871538).