Nitrogen-doped carbon nanosheets with Fe-based nanoparticles for highly efficient degradation of antibiotics and sulfate ion enhancement effect

Chemosphere. 2022 May:294:133704. doi: 10.1016/j.chemosphere.2022.133704. Epub 2022 Jan 20.

Abstract

Developing Fe-based catalysts with high-effective and environmentally friendly features in Fenton-like system for treating wastewater is still a challenge. Novel nitrogen-doped carbon nanosheets with Fe0/Fe3C nano-particles (Fe@NCS-900) were prepared through a simple solvent-free strategy by pyrolyzing the mixture of 2,6-diaminopyridine and ferric chloride hexahydrate under 900 °C. The Fe@NCS-900 possessed almost 100% removal efficiency and 66.5% mineralization rate for the degradation of CBZ in 10 min. Moreover, the Fe@NCS-900 exhibited an apparent first-order constant as high as 0.8809 min-1, which is 22 and 29 times higher than that of the commercial Fe0 and traditional Fenton system, respectively, which could be attribute to the high graphitization degree and rich nitrogen content. Besides, the results of the radical quenching experiments, electron paramagnetic resonance (EPR) and the probe experiments demonstrated that a large number of high valent iron species (Fe (IV)) besides singlet oxygen (1O2) and superoxide radicals (O2•-) existed and contributed to the CBZ degradation. More interestingly, the addition of coexisting anion SO42- in the reaction system could significantly boost the concentration of •OH and SO4•- by 28.3 times and 9.7 times, respectively, resulting in the increase of the apparent first-order constant by 5.9 times (5.1733 min-1), which was entirely different from previous reports that SO42- had no effect on the catalytic activity or even displayed slightly inhibitory effect. In addition, the catalyst exhibited broad pH adaptability in the pH range of 2-9. The intermediate products of CBZ degradation were investigated by liquid chromatography mass spectrometry (LC-MS) and the degradation pathway was proposed. This paper provides new insights for developing a promising Fe-based nitrogen-doped catalyst for practical wastewater treatment.

Keywords: Fe(0)/Fe(3)C nano-particles; Organics degradation; PMS activation; Sulfate ion enhancement effect.

MeSH terms

  • Anti-Bacterial Agents
  • Carbon*
  • Nanoparticles*
  • Nitrogen
  • Peroxides / chemistry
  • Sulfates

Substances

  • Anti-Bacterial Agents
  • Peroxides
  • Sulfates
  • Carbon
  • Nitrogen