Water resource use and driving forces analysis for crop production in China coupling irrigation and water footprint paradigms

Environ Sci Pollut Res Int. 2022 May;29(24):36133-36146. doi: 10.1007/s11356-022-18746-6. Epub 2022 Jan 21.

Abstract

The crop water relationship quantification is conducive to decision-making for regional food safety and resource conservation. However, irrigation water and crop water footprint (CWF) was observed separately in previous studies, which leads to incomplete evaluation of water resource occupation in agricultural system. The crop water resource use (WRU), combining WF and irrigation water accounting, in 31 provinces of China from 1999 to 2018 was estimated in current paper. The driving forces of WRU were analyzed using the logarithmic mean divisia index (LMDI) model, based on its spatial and temporal patterns demonstration. The results showed that national WRU increased from 1051.6 Gm3 in 1999 to 1676.4 Gm3 in 2018, with an average annual growth rate of 2.48%. The provinces with high WRU were mainly distributed in North China and Northeast China. Hebei, Shandong, and Henan jointly contributed 28.9% of the national WRU. In addition, economic level was the largest contributor to promote the growth of WRU, and water use intensity was the most important contributor to inhibit the growth of WRU. Economic level, resource endowment, and population size had a promoting effect on WRU in Northeast, Northwest, North China, and Southeast provinces, while water use intensity, irrigation technique, and urbanization degree showed inhibitory effect in Northeast, Northwest, and Southwest provinces. It is meaningful to combine water footprint and irrigation water use for agricultural water management and conservation. The arid North China Plain should adopt water-saving irrigation and rainwater recycling technologies to control WRU, and the Northeast granary should reduce WRU by strengthening water pollution prevention and improving water resources scheduling to ensure food security and sustainable use of water resources.

Keywords: Crop cultivation; Logarithmic mean divisia index (LMDI); Social development; Water conservation; Water footprint.

MeSH terms

  • Agricultural Irrigation / methods
  • Agriculture / methods
  • China
  • Crop Production
  • Water Resources*
  • Water Supply
  • Water*

Substances

  • Water