Assessment of predicted aircraft engine non-volatile particulate matter emissions at Hangzhou Xiaoshan International Airport using an integrated method

J Air Waste Manag Assoc. 2022 Apr;72(4):370-382. doi: 10.1080/10962247.2022.2029617. Epub 2022 Mar 9.

Abstract

Assessing the aircraft engine nonvolatile particulate matter (nvPM) emissions during landing and take-off (LTO) cycles is significant for airport air quality management. However, presently few prior studies have examined aircraft engine nvPM emissions on a daily basis for optimizing flight operations at airports. Therefore, based on the latest first-order approximation method of engine nvPM emissions, we introduce the engine emission data and aircraft flight data to establish an integrated method for estimating daily aircraft engine nvPM emissions at airports. This method can be applied to obtain different engine nvPM mass and number emissions in each phase of the LTO cycle, and therefore the total nvPM mass and number emissions in different time periods can be estimated for the analysis of the sources and trends of daily aircraft engine nvPM emissions during LTO cycles at Hangzhou Xiaoshan International Airport. Results show that the highest aircraft engine nvPM mass and number emissions are generally predicted to occur in the climb and taxi/ground idle phase, respectively. The proportion of total engine nvPM mass and number emissions in each phase of the LTO cycle could also be estimated, specifically the take-off phase (21% & 6%), climb phase (52% &15%), approach phase (8% & 27%), and taxi/ground idle phase (19% & 52%). In addition, the trends of hourly engine nvPM mass and number emissions during LTO cycles within a day are similar, but the predicted highest total hourly engine nvPM mass and number emissions occur in different time periods (7:00-8:00 a.m. & 11:00-12:00 a.m.) at the airport, and the total hourly engine nvPM mass and number emissions at 6:00 a.m. to 17:00 p.m. are generally higher than those of the rest periods. These results are valuable for optimizing flight operations for mitigating the environmental impact of aircraft engine nvPM emissions.Implications: The integrated method for estimating engine nvPM mass and number emissions in the LTO cycle based on FOA4.0 method reported in this study is effective to assess the sources and trends of daily aircraft engine nvPM emissions during LTO cycles at airports, which is valuable for optimizing flight operations considering the environmental impact of aircraft engine nvPM emissions. When the relevant aircraft flights, engine parameters, and engine nvPM emission databases embedded in the integrated method for any airport are established, the method is feasible to assess the sources and trends of aircraft engine nvPM emissions during LTO cycles at any time period in the airport.