Layer-Number-Dependent Antiferromagnetic and Ferromagnetic Behavior in MnSb_{2}Te_{4}

Phys Rev Lett. 2022 Jan 7;128(1):017201. doi: 10.1103/PhysRevLett.128.017201.

Abstract

MnBi_{2}Te_{4}, an intrinsic magnetic topological insulator, has shown layer-number-correlated magnetic and topological phases. More interestingly, in the isostructural material MnSb_{2}Te_{4}, the antiferromagnetic (AFM) and ferromagnetic (FM) states have been both observed in the bulk counterparts, which are also predicted to be topologically nontrivial. Revealing the layer-number-dependent magnetic properties of MnSb_{2}Te_{4} down to a single septuple layer (SL) is of great significance for exploring the topological phenomena. However, this is still elusive. Here, using the polar reflective magnetic circular dichroism spectroscopy, both the A-type AFM and FM behaviors are observed and comprehensively studied in MnSb_{2}Te_{4} down to a single SL limit. In A-type AFM MnSb_{2}Te_{4} flakes, an obvious odd-even layer-number effect is observed. An additional surface spin-flop (SSF) transition occurs in even-SL flakes with the number of layers larger than 2. With the AFM linear-chain model, we identify that the even-SL flakes stabilize in a collinear state between the SSF transition and the spin-flop transition due to their appropriate energy ratio between the magnetic-field-scale anisotropy and interlayer interaction. In FM MnSb_{2}Te_{4} flakes, we observe very different magnetic behaviors with an abrupt spin-flipping transition and very small saturation fields, indicating a weakened interlayer interaction. By revealing the rich magnetic states of few-SL MnSb_{2}Te_{4} on the parameter space of the number of layers, external magnetic field, and temperature, our findings pave the way for further quantum transport studies of few-SL MnSb_{2}Te_{4}.