Optomechanical Anti-Lasing with Infinite Group Delay at a Phase Singularity

Phys Rev Lett. 2021 Dec 31;127(27):273603. doi: 10.1103/PhysRevLett.127.273603.

Abstract

Singularities which symbolize abrupt changes and exhibit extraordinary behavior are of a broad interest. We experimentally study optomechanically induced singularities in a compound system consisting of a three-dimensional aluminum superconducting cavity and a metalized high-coherence silicon nitride membrane resonator. Mechanically induced coherent perfect absorption and anti-lasing occur simultaneously under a critical optomechanical coupling strength. Meanwhile, the phase around the cavity resonance undergoes an abrupt π-phase transition, which further flips the phase slope in the frequency dependence. The observed infinite discontinuity in the phase slope defines a singularity, at which the group velocity is dramatically changed. Around the singularity, an abrupt transition from an infinite group advance to delay is demonstrated by measuring a Gaussian-shaped waveform propagating. Our experiment may broaden the scope of realizing extremely long group delays by taking advantage of singularities.