Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk

J Nanobiotechnology. 2022 Jan 20;20(1):37. doi: 10.1186/s12951-021-01203-w.

Abstract

Background: Gold nanoparticles (AuNPs) are increasingly utilized in industrial and biomedical fields, thereby demanding a more comprehensive knowledge about their safety. Current toxicological studies mainly focus on the unfavorable biological impact governed by the physicochemical properties of AuNPs, yet the consequences of their interplay with other bioactive compounds in biological systems are poorly understood.

Results: In this study, AuNPs with a size of 10 nm, the most favorable size for interaction with host cells, were given alone or in combination with bacterial lipopolysaccharide (LPS) in mice or cultured hepatic cells. The results demonstrated that co exposure to AuNPs and LPS exacerbated fatal acute liver injury (ALI) in mice, although AuNPs are apparently non-toxic when administered alone. AuNPs do not enhance systemic or hepatic inflammation but synergize with LPS to upregulate hepatic apoptosis by augmenting macrophage-hepatocyte crosstalk. Mechanistically, AuNPs and LPS coordinate to upregulate NADPH oxidase 2 (NOX2)-dependent reactive oxygen species (ROS) generation and activate the intrinsic apoptotic pathway in hepatic macrophages. Extracellular ROS generation from macrophages is then augmented, thereby inducing calcium-dependent ROS generation and promoting apoptosis in hepatocytes. Furthermore, AuNPs and LPS upregulate scavenger receptor A expression in macrophages and thus increase AuNP uptake to mediate further apoptosis induction.

Conclusions: This study reveals a profound impact of AuNPs in aggravating the hepatotoxic effect of LPS by amplifying ROS-dependent crosstalk in hepatic macrophages and hepatocytes.

Keywords: Acute liver injury; Apoptosis; AuNPs; Lipopolysaccharide; Reactive oxygen species.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Communication / drug effects
  • Chemical and Drug Induced Liver Injury, Chronic / pathology*
  • Gold / toxicity*
  • HEK293 Cells
  • Hepatocytes* / drug effects
  • Hepatocytes* / metabolism
  • Humans
  • Lipopolysaccharides / adverse effects*
  • Liver / drug effects
  • Liver / pathology
  • Macrophages / drug effects
  • Macrophages / metabolism
  • Male
  • Metal Nanoparticles / toxicity*
  • Mice
  • Mice, Inbred C57BL
  • Reactive Oxygen Species / metabolism
  • Toxicity Tests, Acute

Substances

  • Lipopolysaccharides
  • Reactive Oxygen Species
  • Gold