Properties of Blended Cement Containing Iron Tailing Powder at Different Curing Temperatures

Materials (Basel). 2022 Jan 17;15(2):693. doi: 10.3390/ma15020693.

Abstract

The properties of blended cement containing 0%, 20%, and 50% iron tailing powder (ITP) at 20 °C and 60 °C were investigated by determining the hydration heat, microstructure, and compressive strength. The addition of ITP decreases the exothermic rate and cumulative hydration heat of blended cement at 20 °C. The high temperature increases the hydration rate and leads to the hydration heat of blended cement containing 20% ITP higher than that of Portland cement. Increasing the amount of ITP decreases the non-evaporable water content and Ca(OH)2 content as well as compressive strength at both of the two studied temperatures. The addition of ITP coarsens the early-age pore structure but improves the later-age pore structure at 20 °C. The high temperature significantly improves the early-age properties of blended cement containing ITP, but it is detrimental to the later-age properties development. The reaction of ITP is limited even at high temperature. The large ITP particles bond poorly with surrounding hydration products under early high-temperature curing condition. The properties of blended cement containing a large amount of ITP are much poorer at high temperature.

Keywords: blended cement; compressive strength; hydration heat; iron tailing powder; microstructure.