Hot Deformation Behavior of Non-Alloyed Carbon Steels

Materials (Basel). 2022 Jan 13;15(2):595. doi: 10.3390/ma15020595.

Abstract

The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.

Keywords: activation energy at hot forming; carbon steels; critical strain for induce of dynamic recrystallization; dynamic recrystallization; hot flow stress curves; peak flow stress; peak strain.