Synthesis, Characterization and Biodistribution of GdF3:Tb3+@RB Nanocomposites

Materials (Basel). 2022 Jan 13;15(2):569. doi: 10.3390/ma15020569.

Abstract

Herein we report the development of a nanocomposite for X-ray-induced photodynamic therapy (X-PDT) and computed tomography (CT) based on PEG-capped GdF3:Tb3+ scintillating nanoparticles conjugated with Rose Bengal photosensitizer via electrostatic interactions. Scintillating GdF3:Tb3+ nanoparticles were synthesized by a facile and cost-effective wet chemical precipitation method. All synthesized nanoparticles had an elongated "spindle-like" clustered morphology with an orthorhombic structure. The structure, particle size, and morphology were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analysis. The presence of a polyethylene glycol (PEG) coating and Rose Bengal conjugates was proved by Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), and ultraviolet-visible (UV-vis) analysis. Upon X-ray irradiation of the colloidal PEG-capped GdF3:Tb3+-Rose Bengal nanocomposite solution, an efficient fluorescent resonant energy transfer between scintillating nanoparticles and Rose Bengal was detected. The biodistribution of the synthesized nanoparticles in mice after intravenous administration was studied by in vivo CT imaging.

Keywords: GdF3:Tb3+; Rose Bengal; X-ray induced photodynamic therapy; computer tomography; organic photosensitizer; scintillating nanoparticle.