Assessment of Boron Diffusivities in Nickel Borides by Two Mathematical Approaches

Materials (Basel). 2022 Jan 12;15(2):555. doi: 10.3390/ma15020555.

Abstract

In the work of this contribution, two kinetics models have been employed to assess the boron diffusivities in nickel borides in case of Inconel 718 alloy. The first approach, named the alternative diffusion model (ADM), used the modified version of mass conservation equations for a three-phase system whilst the second one employed the mean diffusion coefficient (MDC) method. The boron diffusivities in nickel borides were firstly evaluated in the interval of 1123 to 1223 K for an upper boron concentration of 11.654 wt% in Ni4B3. The boron activation energies in the three phases (Ni4B3, Ni2B and Ni3B) were secondly deduced by fitting the values of boron diffusivities with Arrhenius relations. Finally, these values of energy were compared with the results from the literature for their experimental validation.

Keywords: MDC method; activation energy; alternative diffusion model (ADM); boronizing; kinetics; nickel borides.