Recent Advances in Nanoscale Based Electrocatalysts for Metal-Air Battery, Fuel Cell and Water-Splitting Applications: An Overview

Materials (Basel). 2022 Jan 8;15(2):458. doi: 10.3390/ma15020458.

Abstract

Metal-air batteries and fuel cells are considered the most promising highly efficient energy storage systems because they possess long life cycles, high carbon monoxide (CO) tolerance, and low fuel crossover ability. The use of energy storage technology in the transport segment holds great promise for producing green and clean energy with lesser greenhouse gas (GHG) emissions. In recent years, nanoscale based electrocatalysts have shown remarkable electrocatalytic performance towards the construction of sustainable energy-related devices/applications, including fuel cells, metal-air battery and water-splitting processes. This review summarises the recent advancement in the development of nanoscale-based electrocatalysts and their energy-related electrocatalytic applications. Further, we focus on different synthetic approaches employed to fabricate the nanomaterial catalysts and also their size, shape and morphological related electrocatalytic performances. Following this, we discuss the catalytic reaction mechanism of the electrochemical energy generation process, which provides close insight to develop a more efficient catalyst. Moreover, we outline the future perspectives and challenges pertaining to the development of highly efficient nanoscale-based electrocatalysts for green energy storage technology.

Keywords: cyclic stability; fabrication route; nanocomposite; nanoscale electrocatalyst; power density; specific capacity.

Publication types

  • Review