The Beneficial Additive Effect of Silymarin in Metformin Therapy of Liver Steatosis in a Pre-Diabetic Model

Pharmaceutics. 2021 Dec 27;14(1):45. doi: 10.3390/pharmaceutics14010045.

Abstract

The combination of plant-derived compounds with anti-diabetic agents to manage hepatic steatosis closely associated with diabetes mellitus may be a new therapeutic approach. Silymarin, a complex of bioactive substances extracted from Silybum marianum, evinces an antioxidative, anti-inflammatory, and hepatoprotective activity. In this study, we investigated whether metformin (300 mg/kg/day for four weeks) supplemented with micronized silymarin (600 mg/kg/day) would be effective in mitigating fatty liver disturbances in a pre-diabetic model with dyslipidemia. Compared with metformin monotherapy, the metformin-silymarin combination reduced the content of neutral lipids (TAGs) and lipotoxic intermediates (DAGs). Hepatic gene expression of enzymes and transcription factors involved in lipogenesis (Scd-1, Srebp1, Pparγ, and Nr1h) and fatty acid oxidation (Pparα) were positively affected, with hepatic lipid accumulation reducing as a result. Combination therapy also positively influenced arachidonic acid metabolism, including its metabolites (14,15-EET and 20-HETE), mitigating inflammation and oxidative stress. Changes in the gene expression of cytochrome P450 enzymes, particularly Cyp4A, can improve hepatic lipid metabolism and moderate inflammation. All these effects play a significant role in ameliorating insulin resistance, a principal background of liver steatosis closely linked to T2DM. The additive effect of silymarin in metformin therapy can mitigate fatty liver development in the pre-diabetic state and before the onset of diabetes.

Keywords: combination therapy; liver steatosis; metformin; pre-diabetes; silymarin.