Synthesis and Characterization of GO/ZIF-67 Nanocomposite: Investigation of Catalytic Activity for the Determination of Epinine in the Presence of Dobutamine

Micromachines (Basel). 2022 Jan 6;13(1):88. doi: 10.3390/mi13010088.

Abstract

In this study, we prepared graphene oxide (GO)/ZIF-67 nanocomposites. Therefore, GO/ZIF-67 nanocomposites were used as a modifier on a screen-printed electrode (GO/ZIF-67/SPE) for studying the electrochemical behavior of epinine in phosphate buffer saline (PBS) at pH 7.0 with voltammetry techniques. The GO/ZIF-67/SPE showed greater electrocatalytic activities than the bare SPE. As a result, the GO/ZIF-67/SPE was utilized for additional electrochemical examinations. The epinine concentration determination was in the range 9.0 × 10-8 M to 5.0 × 10-4 M, and the limit of detection (LOD) as well as the limit of quantification (LOQ) equaled 2.0 and 6.6 nM, respectively. From the scan rate study, the oxidation of epinine was found to be diffusion-controlled, and the simultaneous detection of epinine and dobutamine were well achieved with the differential pulse voltammetric (DPV) technique. Moreover, the stability and reproducibility of epinine at the GO/ZIF-67/SPE was studied, and the use of the GO/ZIF-67/SPE to detect epinine and dobutamine in real samples was furthermore successfully demonstrated.

Keywords: GO/ZIF-67 nanocomposite; dobutamine; epinine; screen printed electrode; voltammetric sensors.