New IMB16-4 Nanoparticles Improved Oral Bioavailability and Enhanced Anti-Hepatic Fibrosis on Rats

Pharmaceuticals (Basel). 2022 Jan 11;15(1):85. doi: 10.3390/ph15010085.

Abstract

Liver fibrosis is challenging to treat because of the lack of effective agents worldwide. Recently, we have developed a novel compound, N-(3,4,5-trichlorophenyl)-2(3-nitrobenzenesulfonamido) benzamide referred to as IMB16-4. However, its poor aqueous solubility and poor oral bioavailability obstruct the drug discovery programs. To increase the dissolution, improve the oral bioavailability and enhance the antifibrotic activity of IMB16-4, PVPK30 was selected to establish the IMB16-4 nanoparticles. Drug release behavior, oral bioavailability, and anti-hepatic fibrosis effects of IMB16-4 nanoparticles were evaluated. The results showed that IMB16-4 nanoparticles greatly increased the dissolution rate of IMB16-4. The oral bioavailability of IMB16-4 nanoparticles was improved 26-fold compared with that of pure IMB16-4. In bile duct ligation rats, IMB16-4 nanoparticles significantly repressed hepatic fibrogenesis and improved the liver function. These findings indicate that IMB16-4 nanoparticles will provide information to expand a novel anti-hepatic fibrosis agent.

Keywords: IMB16-4 nanoparticles; anti-liver fibrosis; oral bioavailability; poor aqueous solubility.