Effect of Female Sex Hormones on the Immune Response against Chlamydia abortus and on Protection Conferred by an Inactivated Experimental Vaccine in a Mouse Model

Pathogens. 2022 Jan 14;11(1):93. doi: 10.3390/pathogens11010093.

Abstract

Mice are valuable models extensively used to test vaccine candidates against Chlamydia abortus and to clarify immunopathological mechanisms of the bacteria. As this pathogen has the ability to reactivate during pregnancy, it is important to deepen the knowledge and understanding of some of the effects of female hormones on immunity and vaccination. This study is aimed at describing the role of sex hormones in the pathology of OEA during chlamydial clearance using ovariectomised mice and also gaining an understanding of how 17β-oestradiol or progesterone may impact the effectiveness of vaccination. Animals were treated with sex hormones and infected with C. abortus, and the kinetics of infection and immune response were analysed by means of bacterial isolation, histopathology, and immunohistochemistry. In a second phase of the study, protection conferred by an experimental vaccine after hormone treatment was assessed. Oestradiol showed a stimulatory effect on the immune response during infection, with a more efficient recruitment of macrophages and T-cells at the infection site. Furthermore, after vaccination, oestradiol-treated animals showed a stronger protection against infection, indicating that this hormone has a positive effect, stimulating a specific memory response to the pathogen.

Keywords: Chlamydia abortus; estradiol; immune response; mouse model; progesterone; vaccine.