Elevated Expression of JMJD5 Protein Due to Decreased miR-3656 Levels Contributes to Cancer Stem Cell-Like Phenotypes under Overexpression of Cancer Upregulated Gene 2

Biomolecules. 2022 Jan 12;12(1):122. doi: 10.3390/biom12010122.

Abstract

Overexpression of cancer upregulated gene (CUG) 2 induces cancer stem cell-like phenotypes, such as enhanced epithelial-mesenchymal transition, sphere formation, and doxorubicin resistance. However, the precise mechanism of CUG2-induced oncogenesis remains unknown. We evaluated the effects of overexpression of CUG2 on microRNA levels using a microRNA microarray. Levels of miR-3656 were decreased when CUG2 was overexpressed; on the basis of this result, we further examined the target proteins of this microRNA. We focused on Jumonji C domain-containing protein 5 (JMJD5), as it has not been previously reported to be targeted by miR-3656. When CUG2 was overexpressed, JMJD5 expression was upregulated compared to that in control cells. A 3' untranslated region (UTR) assay revealed that an miR-3656 mimic targeted the JMJD5 3'UTR, but the miR-3656 mimic failed to target a mutant JMJD5 3'UTR, indicating that miR-3656 targets the JMJD5 transcript. Administration of the miR-3656 mimic decreased the protein levels of JMD5 according to Western blotting. Additionally, the miR-3656 mimic decreased CUG2-induced cell migration, evasion, and sphere formation and sensitized the cells to doxorubicin. Suppression of JMJD5, with its small interfering RNA, impeded CUG2-induced cancer stem cell-like phenotypes. Thus, overexpression of CUG2 decreases miR-3656 levels, leading to upregulation of JMJD5, eventually contributing to cancer stem cell-like phenotypes.

Keywords: Jumonji C domain-containing protein 5; cancer stem cell; cancer upregulated gene; miR-3656.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Chromosomal Proteins, Non-Histone / metabolism
  • Gene Expression Regulation, Neoplastic
  • MicroRNAs* / genetics
  • Neoplasms* / genetics
  • Neoplastic Stem Cells / metabolism
  • Phenotype
  • Signal Transduction

Substances

  • Chromosomal Proteins, Non-Histone
  • MicroRNAs