The Dilemma of Reconstructive Material Choice for Orbital Floor Fracture: A Narrative Review

Medicines (Basel). 2022 Jan 13;9(1):6. doi: 10.3390/medicines9010006.

Abstract

The aim of this study is to present a narrative review of the properties of materials currently used for orbital floor reconstruction. Orbital floor fractures, due to their complex anatomy, physiology, and aesthetic concerns, pose complexities regarding management. Since the 1950s, a myriad of materials has been used to reconstruct orbital floor fractures. This narrative review synthesises the findings of literature retrieved from search of PubMed, Web of Science, and Google Scholar databases. This narrative review was conducted of 66 studies on reconstructive materials. Ideal material properties are that they are resorbable, osteoconductive, resistant to infection, minimally reactive, do not induce capsule formation, allow for bony ingrowth, are cheap, and readily available. Autologous implants provide reliable, lifelong, and biocompatible material choices. Allogenic materials pose a threat of catastrophic disease transmission. Newer alloplastic materials have gained popularity. Consideration must be made when deliberating the use of permanent alloplastic materials that are a foreign body with potential body interactions, or the use of resorbable alloplastic materials failing to provide adequate support for orbital contents. It is vital that surgeons have an appropriate knowledge of materials so that they are used appropriately and reduce the risks of complications.

Keywords: biomaterials; complications; orbit; orbital fracture; orbital implants; orbital reconstruction.

Publication types

  • Review