Effects of progressive resistance training in individuals with type 2 diabetic polyneuropathy: a randomised assessor-blinded controlled trial

Diabetologia. 2022 Apr;65(4):620-631. doi: 10.1007/s00125-021-05646-6. Epub 2022 Jan 19.

Abstract

Aims/hypothesis: The aim of this study was to evaluate the effects of progressive resistance training (PRT) on muscle strength, intraepidermal nerve fibre density (IENFD) and motor function in individuals with type 2 diabetic polyneuropathy (DPN) and to compare potential adaptations to those of individuals with type 2 diabetes without DPN and healthy controls.

Methods: This was an assessor-blinded trial conducted at the Neurology department, Aarhus University Hospital. Adults with type 2 diabetes, with and without DPN and healthy control participants were randomised to either supervised PRT or non-PRT for 12 weeks. Allocation was concealed by a central office unrelated to the study. The co-primary outcomes were muscle strength in terms of the peak torque of the knee and ankle extensors and flexors, and IENFD. Secondary outcome measures included the 6 min walk test (6MWT), five-time sit-to-stand test (FTSST) and postural stability index obtained by static posturography.

Results: A total of 109 individuals were enrolled in three groups (type 2 diabetes with DPN [n = 42], type 2 diabetes without DPN [n = 32] and healthy control [n = 35]). PRT resulted in muscle strength gains of the knee extensors and flexors in all three groups using comparative analysis (DPN group, PRT 10.3 ± 9.6 Nm vs non-PRT -0.4 ± 8.2 Nm; non-DPN group, PRT 7.5 ± 5.8 Nm vs non-PRT 0.6 ± 8.8 Nm; healthy control group, PRT 6.3 ± 9.0 Nm vs non-PRT -0.4 ± 8.4 Nm; p<0.05, respectively). Following PRT the DPN group improved the 6MWT (PRT 34.6 ± 40.9 m vs non-PRT 2.7 ± 19.6 m; p=0.001) and the FTSST (PRT -1.5 ± 2.2 s vs non-PRT 1.5 ± 4.6 s; p=0.02). There was no change in IENFD following PRT in any of the groups.

Conclusions/interpretation: PRT improved muscle strength of the knee extensors and flexors and motor function in individuals with type 2 diabetic polyneuropathy at levels comparable with those seen in individuals with diabetes without DPN and healthy control individuals, while no effects were observed in IENFD.

Trial registration: ClinicalTrials.gov NCT03252132 FUNDING: Research reported in this paper is part of the International Diabetic Neuropathy Consortium (IDNC) research programme, supported by a Novo Nordisk Foundation Challenge Program grant (grant no. NNF14OC0011633) and Aarhus University.

Keywords: Diabetic polyneuropathy; Exercise; Motor function; Muscle strength; Progressive resistance training; Small nerve fibre structure.

Publication types

  • Randomized Controlled Trial
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Diabetes Mellitus, Type 2* / complications
  • Diabetes Mellitus, Type 2* / therapy
  • Diabetic Neuropathies* / therapy
  • Humans
  • Muscle Strength / physiology
  • Resistance Training* / methods

Associated data

  • ClinicalTrials.gov/NCT03252132