Advanced three-dimensional hierarchical porous α-MnO2nanowires network toward enhanced supercapacitive performance

Nanotechnology. 2024 Apr 22;35(26). doi: 10.1088/1361-6528/ac4cf0.

Abstract

Hierarchicalα-MnO2nanowires with oxygen vacancies grown on carbon fiber have been synthesized by a simple hydrothermal method with the assistance of Ti4+ions. Ti4+ions play an important role in controlling the morphology and crystalline structure of MnO2. The morphology and structure of the as-synthesized MnO2could be tuned fromδ-MnO2nanosheets to hierarchicalα-MnO2nanowires with the help of Ti4+ions. Based on its fascinating properties, such as many oxygen vacancies, high specific surface area and the interconnected porous structure, theα-MnO2electrode delivers a high specific capacitance of 472 F g-1at a current density of 1 A g-1and the rate capability of 57.6% (from 1 to 16 A g-1). The assembled symmetric supercapacitor based onα-MnO2electrode exhibits remarkable performance with a high energy density of 44.5 Wh kg-1at a power density of 2.0 kW kg-1and good cyclic stability (92.6% after 10 000 cycles). This work will provide a reference for exploring and designing high-performance MnO2materials.

Keywords: MnO2; hierarchical structures; oxygen defects; supercapacitor.