Wearable Self-Powered Smart Sensors for Portable Nutrition Monitoring

Anal Chem. 2022 Feb 1;94(4):2333-2340. doi: 10.1021/acs.analchem.1c05189. Epub 2022 Jan 19.

Abstract

Self-powered sensors have attracted great attention in the field of analysis owing to the necessity of power resources for the routine use of sensor devices. However, it is still challenging to construct wearable self-powered sensors in a simple and efficient way. Herein, wearable self-powered textile smart sensors based on advanced bifunctional polyaniline/reduced graphene oxide (PANI/RGO) films have been successfully developed for remote real-time detection of vitamin C. Specifically, a pH-assisted oil/water (O/W) self-assembly strategy was proposed to boost the O/W self-assembled PANI/RGO films via proton regulation. The as-obtained PANI/RGO films could be directly loaded on the textile substrate, with good capacitive and biosensing performance due to the multifunctionality of PANI and RGO, respectively. Moreover, both wearable power supply devices and wearable biosensors based on PANI/RGO films possess good electrochemical performance, which paves the way for the actual application of self-powered nutrition monitoring. Significantly, obvious signals have been obtained in the detection of vitamin C beverages, exhibiting promising application values in daily nutrition track necessities. Prospectively, this study would provide an effective and simple strategy for integrating wearable self-powered sensors, and the developed smart sensing system is an ideal choice for the portable detection of nutrition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques*
  • Textiles
  • Wearable Electronic Devices*