Quantifying neonatal patient effort using non-invasive model-based methods

Med Biol Eng Comput. 2022 Mar;60(3):739-751. doi: 10.1007/s11517-021-02491-y. Epub 2022 Jan 19.

Abstract

Patient-specific spontaneous breathing effort (SB) is common in invasively mechanically ventilated (MV) adult patients, and especially common in preterm neonates who are not typically sedated. However, there is no proven, ethically feasible and non-invasive method to quantify SB effort in neonates, creating the potential for model-based measures. Lung mechanics and SB effort are segregated using a basis function model to identify passive lung mechanics, and an additional time-varying elastance model to identify patient-specific SB effort and asynchrony as negative and positive added elastances, respectively. Data from ten preterm neonates on standard MV care in the neonatal intensive care unit (NICU) are used to assess this model-based approach, using area under the curve (AUC) for positive (asynchrony) and negative (SB effort) time-varying elastance. Median [interquartile-range (IQR)] of passive pulmonary lung elastance was 3.82 [2.09-5.80] cmH2O/ml. Median [IQR] AUC quantified SB effort was -0.32 [-0.43--0.12]cmH2O/ml. AUC quantified asynchrony was 0.00 [0.00-0.01]cmH2O/ml, and affected 28% of the 25,287 total breaths. This proof of concept model-based approach provides a non-invasive, computationally straightforward, and thus clinically feasible means to quantify patient-specific spontaneous breathing effort and asynchrony.

Keywords: Intensive care unit; Lung; Neonatal; Physiology; Respiratory system.

MeSH terms

  • Adult
  • Humans
  • Infant, Newborn
  • Lung*
  • Respiration, Artificial*
  • Respiratory Function Tests
  • Respiratory Mechanics