Interfacial Microenvironment Modulation Enhancing Catalytic Kinetics of Binary Metal Sulfides Heterostructures for Advanced Water Splitting Electrocatalysts

Small Methods. 2022 Jan;6(1):e2101186. doi: 10.1002/smtd.202101186. Epub 2021 Dec 4.

Abstract

Interfacial microenvironment modulation has been proven to be a promising route to fabricate highly efficient catalysts. In this work, the lattice defect-rich NiS2 /MoS2 nanoflakes (NMS NFs) electrocatalysts are successfully synthesized by a simple strategy. Benefiting from the abundant lattice defects and modulated interfacial microenvironment between NiS2 and MoS2 , the prepared NMS NFs show superior catalytic activity for water splitting. Particularly, the optimized NMS NFs (the molar ratio of Ni:Mo = 5:5) exhibit remarkable catalytic activity toward overall water splitting with a voltage of 1.60 V at 10 mA cm-2 in alkaline media, which is lower than that of the noble-metal-based electrocatalysts (1.68 V at 10 mA cm-2 ). The NMS NFs electrocatalysts also show exceptional long-term stability (>50 h) for overall water splitting. The density functional theory results demonstrate that the injection of NiS2 into MoS2 can greatly optimize the catalytic kinetics and reduce the energy barrier for hydrogen/oxygen evolution reactions. The work does not only offer a promising candidate for a highly efficient water splitting electrocatalyst but also highlights that interfacial microenvironment modulation is a potential strategy to optimize the catalytic kinetics.

Keywords: MoS 2; NiS 2; density functional theory; interfacial microenvironment modulation; overall water splitting.