Ion Migration in Organic-Inorganic Hybrid Perovskite Solar Cells: Current Understanding and Perspectives

Small. 2022 Apr;18(15):e2105783. doi: 10.1002/smll.202105783. Epub 2022 Jan 17.

Abstract

Organic-inorganic hybrid perovskite (OIHPs) solar cells are the most promising alternatives to traditional silicon solar cells, with a certified power conversion efficiency beyond 25%. However, the poor stability of OHIPs is one of the thorniest obstacles that hinder its commercial development. Among all the factors affecting stability, ion migration is prominent because it is unavoidable and intrinsic in OHIPs. Therefore, it is important to understand the mechanism for ion migration and regulation strategies. Herein, the types of ions that may migrate in OHIPs are first discussed; afterward, the migrating channels are demonstrated. The effects of ion migration are further elaborated. While ion migration can facilitate the p-i-n structure in some cases, the current hysteresis and other adverse effects such as phase segregation in OHIPs attract widespread attention. Based on these, several recent strategies to suppress the ion migration are enumerated, including the introduction of alkali cations, organic additives, grain boundaries passivation, and employment of low-dimensional perovskites. Finally, the prospect for further modulating the ion migration and more stable perovskite solar cells is proposed.

Keywords: defects; hysteresis; migrating channels; mobile ions; stability.

Publication types

  • Review