A deep learning classification of metacarpophalangeal joints synovial proliferation in rheumatoid arthritis by ultrasound images

J Clin Ultrasound. 2022 Feb;50(2):296-301. doi: 10.1002/jcu.23143. Epub 2022 Jan 17.

Abstract

Objective: To evaluate if an automatic classification of rheumatoid arthritis (RA) metacarpophalangeal joint conditions in ultrasound images is feasible by deep learning (DL) method, to provide a more objective, automated, and fast way of RA diagnosis in clinical setting.

Materials and methods: DenseNet-based DL model was used and both training and testing are implemented in TensorFlow 1.13.1 with Keras DL libraries. The area under curve (AUC), accuracy, sensitivity, and specificity values with 95% CIs were reported. The statistical analysis was performed by using scikit-learn libraries in Python 3.7.

Results: A total of 1337 RA ultrasound images were acquired from 208 patients, the number of images is 313, 657, 178, and 189 in OESS Grade L0, L1, L2, and L3, respectively. In Classification Scenario 1 SP-no versus SP-yes, three experiments with region of interest of size 192 × 448 (Group 1), 96 × 224 (Group 2), and 96 × 224 stacked with pre-segmented annotated mask of SP area (Group 3) as input achieve an AUC of 0.863 (95% CI: 0.809, 0.917), 0.861 (95% CI: 0.805, 0.916), and 0.886 (95% CI: 0.836, 0.936), respectively. In Classification Scenario 2 Healthy versus Diseased, experiments in Group 1, Group 2 and Group 3 achieve an AUC of 0.848 (95% CI: 0.799, 0.896), 0.864 (95% CI: 0.819, 0.909), and 0.916 (95% CI: 0.883, 0.952), respectively.

Conclusion: We combined DenseNet model with ultrasound images for RA condition assessment. The feasibility of using DL to create an automatic RA condition classification system was also demonstrated. The proposed method can be an alternative to the initial screening of RA patients.

Keywords: artificial intelligence; deep learning; rheumatoid arthritis; synovitis; ultrasonography.

MeSH terms

  • Arthritis, Rheumatoid* / diagnostic imaging
  • Cell Proliferation
  • Deep Learning*
  • Humans
  • Metacarpophalangeal Joint / diagnostic imaging
  • Synovitis*
  • Ultrasonography