Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework

Eur Radiol. 2022 Jun;32(6):3639-3648. doi: 10.1007/s00330-021-08455-y. Epub 2022 Jan 17.

Abstract

Objectives: To evaluate the performance of the nnU-Net open-source deep learning framework for automatic multi-task segmentation of craniomaxillofacial (CMF) structures in CT scans obtained for computer-assisted orthognathic surgery.

Methods: Four hundred and fifty-three consecutive patients having undergone high-resolution CT scans before orthognathic surgery were randomly distributed among a training/validation cohort (n = 300) and a testing cohort (n = 153). The ground truth segmentations were generated by 2 operators following an industry-certified procedure for use in computer-assisted surgical planning and personalized implant manufacturing. Model performance was assessed by comparing model predictions with ground truth segmentations. Examination of 45 CT scans by an industry expert provided additional evaluation. The model's generalizability was tested on a publicly available dataset of 10 CT scans with ground truth segmentation of the mandible.

Results: In the test cohort, mean volumetric Dice similarity coefficient (vDSC) and surface Dice similarity coefficient at 1 mm (sDSC) were 0.96 and 0.97 for the upper skull, 0.94 and 0.98 for the mandible, 0.95 and 0.99 for the upper teeth, 0.94 and 0.99 for the lower teeth, and 0.82 and 0.98 for the mandibular canal. Industry expert segmentation approval rates were 93% for the mandible, 89% for the mandibular canal, 82% for the upper skull, 69% for the upper teeth, and 58% for the lower teeth.

Conclusion: While additional efforts are required for the segmentation of dental apices, our results demonstrated the model's reliability in terms of fully automatic segmentation of preoperative orthognathic CT scans.

Key points: • The nnU-Net deep learning framework can be trained out-of-the-box to provide robust fully automatic multi-task segmentation of CT scans performed for computer-assisted orthognathic surgery planning. • The clinical viability of the trained nnU-Net model is shown on a challenging test dataset of 153 CT scans randomly selected from clinical practice, showing metallic artifacts and diverse anatomical deformities. • Commonly used biomedical segmentation evaluation metrics (volumetric and surface Dice similarity coefficient) do not always match industry expert evaluation in the case of more demanding clinical applications.

Keywords: Deep learning; Orthognathic surgery; Surgery, computer-assisted; Tomography, x-ray computed.

MeSH terms

  • Computers
  • Humans
  • Image Processing, Computer-Assisted*
  • Orthognathic Surgery*
  • Reproducibility of Results
  • Tomography, X-Ray Computed