Physiological evaluation for salt tolerance in green and purple leaf color rice cultivars at seedling stage

Physiol Mol Biol Plants. 2021 Dec;27(12):2819-2832. doi: 10.1007/s12298-021-01114-y. Epub 2021 Dec 16.

Abstract

Anthocyanin, a water-soluble pigment found in plants, has been reported to be associated with abiotic stress tolerance including salt stress. For a better understanding of the role of anthocyanin in response to salt stress, two salt-tolerant rice genotypes having different leaf anthocyanin content, one having green ('Pokkali'; PK) and the other purple leaves ('Niew Dam 019'; ND 019), were used in this study. After being subjected to salt stress (150 mM NaCl) for 5 d, the 3-week-old rice genotypes PK and ND 019 exhibited significant physiological responses (water content, Na+/K+ ratio, osmolyte accumulation, osmotic adjustment, antioxidant capacity, membrane damage and chlorophyll) and expression of ion transporter genes, indicating overall salt tolerance ability. However, the green-leaved rice variety, PK, had better root-to-shoot Na+ exclusion mechanism than the purple-leaved variety, ND 019 as evidenced by lower Na+ accumulation in leaves compared to ND 019 despite the fact that they accumulated the similar level of Na+ in roots. On the other hand, ND 019 accumulated higher concentration of osmolytes leading to more enhanced osmotic adjustment. These results revealed that Na+ ion exclusion was the prominent salt tolerance mechanism in the green-leaved PK whereas in the purple-leaved ND 019 osmotic adjustment was the more significant strategy. Under salt stress, there was no remarkable change in anthocyanin in PK while a reduction was found in ND 019. Thus, it could be proposed that anthocyanin did not play a vital role in protecting the purple-leaved rice, ND 019 from salt stress during seedling stage.

Supplementary information: The online version contains supplementary material available at 10.1007/s12298-021-01114-y.

Keywords: Anthocyanin; Ion exclusion; Osmotic adjustment; Rice; Salt stress.