Strain Switching in van der Waals Heterostructures Triggered by a Spin-Crossover Metal-Organic Framework

Adv Mater. 2022 Mar;34(11):e2110027. doi: 10.1002/adma.202110027. Epub 2022 Feb 4.

Abstract

Van der Waals heterostructures (vdWHs) provide the possibility of engineering new materials with emergent functionalities that are not accessible in another way. These heterostructures are formed by assembling layers of different materials used as building blocks. Beyond inorganic 2D crystals, layered molecular materials remain still rather unexplored, with only few examples regarding their isolation as atomically thin layers. Here, the family of van der Waals heterostructures is enlarged by introducing a molecular building block able to produce strain: the so-called spin-crossover (SCO). In these metal-organic materials, a spin transition can be induced by applying external stimuli like light, temperature, pressure, or an electric field. In particular, smart vdWHs are prepared in which the electronic and optical properties of the 2D material (graphene and WSe2 ) are clearly switched by the strain concomitant to the spin transition. These molecular/inorganic vdWHs represent the deterministic incorporation of bistable molecular layers with other 2D crystals of interest in the emergent fields of straintronics and band engineering in low-dimensional materials.

Keywords: 2D materials; molecular magnetism; spin-crossover molecules; van der Waals heterostructures.